Full analogy between electromagnetism and gravity, with matter wave calculation through solar system simulation sourced with ephemeris data from horizons (nasa). Argument of mercury perihelion precession against general relativity.
- We've proposed a parallel theory to electromagnetism, concluding De Broglie's prediction of a waveform associated with a moving mass.
- We've shown how this mathematical relationship is.
- We've calculated wave speed whose value is less than light speed, according to the astronomical data.
- We finally set out a possible refutation of the theory, through the gravitational repulsion.
Start data 4
Planets data 4
Previous results 4
Octave simulations 4
Hardware 4
Tolerances 4
Newton equations (model 32) 4
Measured astronomic data comparison (model 33) 6
MGF model (model 34) 6
Especial relativity (model 45) 8
Remarks 8
Positional vector errors 8
Other planets effect 8
Central force aberration for wave propagation time 8
Matter wave theory implications 9
Appreciable differences 9
Conclusion 9
Append I: Ephemeris data 10
Sun 11
Mercury 12
Venus 13
Earth 14
Mars 15
Jupiter 16
Saturn 17
Uranus 18
Neptune 19
Append II: Sun rotation 20
Append III: Magnetic field equations 21
Append IV: Special relativity 22
Append V: Mass field equations 23
References 24
Introduction: De Broglie duality
We'll set an analogy between electric charges and inertial mass. This analogy was previously observed from Heaviside since 1922 (1); we'll show a new point of view which will explain mercury perihelion precession without general relativity introduction. Those analogy between mass and charge will help us to discover a new force law.
We're showing this analogy in Table 1, using the expression of magnetic force for moving charges to search for this new force law.
Mass field | Electromagnetic field |
? |
Table 1: Electromagnetic and mass analogy
In this line of thinking, being the expression of force on moving masses,
We set the constant value that relates the forces known constants, if this quotient is 'cte',
getting our table with the four forces,
Mass field | Electromagnetic field |
As we told, we'll test the expression through the calculation of the perihelion of Mercury.
Should be noted that the electric field is identified with the gravitational field, likewise that the magnetic field is identified with what we called field mass movement or motion gravitational field. Another papers named it gravitomagnetic field(1).
As a result of the model calibration in the expression of the movement gravitatory force (MGF), the force lacks the minus sign, which has the expression of the gravitational force of Newton.
Start data from nasa ephemeris
Planets data
Eight planets of solar system and the sun are considered for calculations; getting ephemeris data(2) without stellar aberration correction (geometric states).
NOTE: Arbitrary data couldn't be selected because Mars, we set a valid range for all planets.
Initial conditions used for ODEs was showed in Append I: Ephemeris data. The product of (G*m), collected in DE405(5), was used for setting each planet equation. Inestead of the values of horizons constants we have used values of DE405, so we don't need individual data of planets, only (G*m) product.
Previous results
On literature we can find perihelion precession of 574.10±0.65 arc-seconds by century (ICFR reference -mean values-). 532 arcsec of them are from solar system planets influence and 42.98 arcsec must being of general relativity contribution(3),(4).
Calculations referred to sun reference frame (in it's center), so we need to get precessions at this reference frame and set how to perform this calculation.
For precession calculation Mercury position vector when perihelion come at each cycle, starting form first gained vector and determining angle between current and this first vector we get precessions. For angle between vectors calculation we are using scalar product formula,
Mercury position vector, when perihelion come at each cycle, is needed for precession calculation. Starting form first gained vector and determining angle between current, and this first vector, we get precessions. The angle between the vectors is computed using the formula for the scalar product,
The angle must be averaged because the actual value fluctuates, so that, we are using cumsum octave function. In an extended period of observation, the value stabilizes and get the real value of the precession. We can't use all simulated data for performing perihelion calculation because stabilization; in each graph will show current promediated years and predicted perihelion precession.
Octave simulations of solar system
Hardware
Tolerances
Getting 1e-4 precision in alpha, needing around 1e4 precision tolerance in the positional vector.
Newton equations (model 32)
Cumsum results for the perihelion precession in the model of the solar system by Newton's laws are showed in Illustration 1. We got 265 arcsec (simulated one century, last 50 years for getting real tendency)
Date | Range |
2013-Feb-17 02:15:41.0000 | 4.600028652353445E+07 |
2013-Feb-17 02:20:41.0000 | 4.600028430206786E+07 |
2013-Feb-17 02:25:41.0000 | 4.600028324139002E+07 |
2013-Feb-17 02:30:41.0000 | 4.600028334150112E+07 |
2013-Feb-17 02:35:41.0000 | 4.600028460240115E+07 |
Table 2: Perihelion calculation date via ephemeris
Relative error in positional vector was about 0.38%-0.11%.
Measured astronomic data comparison (model 33)
MGF model (model 34)
Initially, we get a null effect of this force on the system, consisting of point masses,
Sun speed is lower (~5km/s) than mercury speed (~59km/s)
Rotational data of sun are in Append II: Sun rotation.
Field equation are, (go to Append III: Magnetic field equations for deduction),
Being Ms y Vs mass and volume of sun. And Rs it's radius.
This equation could be set for ith planet as,
And,
With,
Being i coordinates from planet under MGF force.
We have to introduce an additional hypotesis to get an appreciable effect: matter wave propagation speed being less than light propagation speed. From simulations we got cm~3,966.470 km/s (286.61arcsec). Simulation data at Illustration 3.
Relative error of simulation was about 0.48%.
Especial relativity (model 45)
Analyzing contribution of special relativity as explained in Append IV: Special relativity, we got no appreciable influence (few arcsec, but can't explain perihelion precession of 22 arcsec)
But we can introduce it for accounting it's effect in matter wave speed. In this way, we got 4,687.756 km/s (286.43 arcsec, Illustration 4)
Remarks
Positional vector errors
Other planets effect
Central force aberration for wave propagation time
We've seen this effect in (6), Tome II, chap 21, page 21-2, for electromagnetic field. Extrapolation would require us to test the contribution between planets (maybe Venus on Mercury) but we wouldn't consider sun influence, because other planets feeling sun influence as static (they don't see a moving sun) So there is no wave emission.
Matter wave theory implications
Proposed equations was placed in Append V: Mass field equations.
Appreciable differences
Conclusion
We've proposed a parallel theory to electromagnetism, concluding De Broglie's prediction of a waveform associated with a moving mass. We've shown how this mathematical relationship is.
Append I: Ephemeris data
Ephemeris Type | VECTORS |
Coordinate Origin | Sun (body center) [500@10] |
Table Settings | Output units=KM-S; quantities code=2; labels=YES; CSV format=YES |
Units | Km y km/s |
Reference frame | IRCF/J2000.0 |
Reference plane | Ecliptic and mean equinox of reference epoch |
Coordinate system description:
Ecliptic and Mean Equinox of Reference Epoch
xy-plane: plane of the Earth's orbit at the reference epoch
x-axis : out along ascending node of instantaneous plane of the Earth's
orbit and the Earth's mean equator at the reference epoch
z-axis : perpendicular to the xy-plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
JDCT Epoch Julian Date, Coordinate Time
X x-component of position vector (km)
Y y-component of position vector (km)
Z z-component of position vector (km)
VX x-component of velocity vector (km/sec)
VY y-component of velocity vector (km/sec)
VZ z-component of velocity vector (km/sec)
Geometric states/elements have no aberration corrections applied.
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Information: http://ssd.jpl.nasa.gov/
Connect : telnet://ssd.jpl.nasa.gov:6775 (via browser)
telnet ssd.jpl.nasa.gov 6775 (via command-line)
Author : Jon.Giorgini@jpl.nasa.gov
*******************************************************************************
Sun
Target Body | Sun [Sol] [10] |
Coordinate Origin | Sun (body center) [500@10] |
Time Span | Start=1912-12-25, Stop=2012-12-25, Step=100 Y |
Results
*******************************************************************************
Ephemeris / WWW_USER Fri Dec 14 07:13:25 2012 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Sun (10) {source: DE405}
Center body name: Sun (10) {source: DE405}
*******************************************************************************
Start time : A.D. 1912-Dec-25 00:00:00.0000 CT
Stop time : A.D. 2012-Dec-25 00:00:00.0000 CT
Step-size : 100 calendar years
*******************************************************************************
Center geodetic : 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 696000.0 x 696000.0 x 696000.0 k{Equator, meridian, pole}
Reference frame : ICRF/J2000.0
Output type : GEOMETRIC cartesian states
Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch
*******************************************************************************
*******************************************************************************
*******************************************************************************
Mercury
Target Body | Mercury [199] |
Coordinate Origin | Sun (body center) [500@10] |
Time Span | Start=1912-12-25, Stop=2012-12-25, Step=100 Y |
Results
*******************************************************************************
Ephemeris / WWW_USER Fri Dec 14 06:18:18 2012 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Mercury (199) {source: DE405}
Center body name: Sun (10) {source: DE405}
*******************************************************************************
Start time : A.D. 1912-Dec-25 00:00:00.0000 CT
Stop time : A.D. 2012-Dec-25 00:00:00.0000 CT
Step-size : 100 calendar years
*******************************************************************************
Center geodetic : 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 696000.0 x 696000.0 x 696000.0 k{Equator, meridian, pole}
Reference frame : ICRF/J2000.0
Output type : GEOMETRIC cartesian states
Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch
*******************************************************************************
*******************************************************************************
*******************************************************************************
Venus
Target Body | Venus [299] |
Coordinate Origin | Sun (body center) [500@10] |
Time Span | Start=1912-12-25, Stop=2012-12-25, Step=100 Y |
Results
*******************************************************************************
Ephemeris / WWW_USER Fri Dec 14 06:20:44 2012 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Venus (299) {source: DE405}
Center body name: Sun (10) {source: DE405}
*******************************************************************************
Start time : A.D. 1912-Dec-25 00:00:00.0000 CT
Stop time : A.D. 2012-Dec-25 00:00:00.0000 CT
Step-size : 100 calendar years
*******************************************************************************
Center geodetic : 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 696000.0 x 696000.0 x 696000.0 k{Equator, meridian, pole}
Reference frame : ICRF/J2000.0
Output type : GEOMETRIC cartesian states
Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch
*******************************************************************************
*******************************************************************************
*******************************************************************************
Earth
Target Body | Earth [Geocenter] [399] |
Coordinate Origin | Sun (body center) [500@10] |
Time Span | Start=1912-12-25, Stop=2012-12-25, Step=100 Y |
Results
*******************************************************************************
Ephemeris / WWW_USER Fri Dec 14 06:22:13 2012 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Earth (399) {source: DE405}
Center body name: Sun (10) {source: DE405}
*******************************************************************************
Start time : A.D. 1912-Dec-25 00:00:00.0000 CT
Stop time : A.D. 2012-Dec-25 00:00:00.0000 CT
Step-size : 100 calendar years
*******************************************************************************
Center geodetic : 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 696000.0 x 696000.0 x 696000.0 k{Equator, meridian, pole}
Reference frame : ICRF/J2000.0
Output type : GEOMETRIC cartesian states
Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch
*******************************************************************************
*******************************************************************************
*******************************************************************************
Mars
Target Body | Mars [499] |
Coordinate Origin | Sun (body center) [500@10] |
Time Span | Start=1912-12-25, Stop=2012-12-25, Step=100 Y |
Results
*******************************************************************************
Ephemeris / WWW_USER Fri Dec 14 06:24:47 2012 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Mars (499) {source: MAR097}
Center body name: Sun (10) {source: DE405}
*******************************************************************************
Start time : A.D. 1912-Dec-25 00:00:00.0000 CT
Stop time : A.D. 2012-Dec-25 00:00:00.0000 CT
Step-size : 100 calendar years
*******************************************************************************
Center geodetic : 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 696000.0 x 696000.0 x 696000.0 k{Equator, meridian, pole}
Reference frame : ICRF/J2000.0
Output type : GEOMETRIC cartesian states
Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch
*******************************************************************************
*******************************************************************************
*******************************************************************************
Jupiter
Target Body | Jupiter [599] |
Coordinate Origin | Sun (body center) [500@10] |
Time Span | Start=1912-12-25, Stop=2012-12-25, Step=100 Y |
Results
*******************************************************************************
Ephemeris / WWW_USER Fri Dec 14 06:26:01 2012 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Jupiter (599) {source: JUP230}
Center body name: Sun (10) {source: DE405}
*******************************************************************************
Start time : A.D. 1912-Dec-25 00:00:00.0000 CT
Stop time : A.D. 2012-Dec-25 00:00:00.0000 CT
Step-size : 100 calendar years
*******************************************************************************
Center geodetic : 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 696000.0 x 696000.0 x 696000.0 k{Equator, meridian, pole}
Reference frame : ICRF/J2000.0
Output type : GEOMETRIC cartesian states
Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch
*******************************************************************************
*******************************************************************************
*******************************************************************************
Saturn
Target Body | Saturn [699] |
Coordinate Origin | Sun (body center) [500@10] |
Time Span | Start=1912-12-25, Stop=2012-12-25, Step=100 Y |
Results
*******************************************************************************
Ephemeris / WWW_USER Fri Dec 14 06:26:55 2012 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Saturn (699) {source: SAT351}
Center body name: Sun (10) {source: DE405}
*******************************************************************************
Start time : A.D. 1912-Dec-25 00:00:00.0000 CT
Stop time : A.D. 2012-Dec-25 00:00:00.0000 CT
Step-size : 100 calendar years
*******************************************************************************
Center geodetic : 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 696000.0 x 696000.0 x 696000.0 k{Equator, meridian, pole}
Reference frame : ICRF/J2000.0
Output type : GEOMETRIC cartesian states
Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch
*******************************************************************************
*******************************************************************************
*******************************************************************************
Uranus
Target Body | Uranus [799] |
Coordinate Origin | Sun (body center) [500@10] |
Time Span | Start=1912-12-25, Stop=2012-12-25, Step=100 Y |
Results
*******************************************************************************
Ephemeris / WWW_USER Fri Dec 14 06:27:45 2012 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Uranus (799) {source: URA095}
Center body name: Sun (10) {source: DE405}
*******************************************************************************
Start time : A.D. 1912-Dec-25 00:00:00.0000 CT
Stop time : A.D. 2012-Dec-25 00:00:00.0000 CT
Step-size : 100 calendar years
*******************************************************************************
Center geodetic : 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 696000.0 x 696000.0 x 696000.0 k{Equator, meridian, pole}
Reference frame : ICRF/J2000.0
Output type : GEOMETRIC cartesian states
Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch
*******************************************************************************
*******************************************************************************
*******************************************************************************
Neptune
Target Body | Neptune [899] |
Coordinate Origin | Sun (body center) [500@10] |
Time Span | Start=1912-12-25, Stop=2012-12-25, Step=100 Y |
Results
*******************************************************************************
Ephemeris / WWW_USER Fri Dec 14 06:28:42 2012 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Neptune (899) {source: NEP081}
Center body name: Sun (10) {source: DE405}
*******************************************************************************
Start time : A.D. 1912-Dec-25 00:00:00.0000 CT
Stop time : A.D. 2012-Dec-25 00:00:00.0000 CT
Step-size : 100 calendar years
*******************************************************************************
Center geodetic : 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 696000.0 x 696000.0 x 696000.0 k{Equator, meridian, pole}
Reference frame : ICRF/J2000.0
Output type : GEOMETRIC cartesian states
Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch
*******************************************************************************
*******************************************************************************
*******************************************************************************
Append II: Sun rotation
http://en.wikipedia.org/wiki/Solar_rotation
Latitude dependent rotation,
constants being,
A= 14.713 deg/day (± 0.0491)
B= –2.396 deg/day (± 0.188)
C= –1.787 deg/day (± 0.253)
and maximum in the equator plane. Equation relating latitude and third spherical coordinate being,
so, rotation module become,
and constants in rad/s are,
Getting,
A'= 2.9721098709e-06 rad/sec
B'= –4.84005658308e-07 rad/sec
C'= –3.60984186726e-07 rad/sec
As reference frame is in the sun, z axis match sun rotation axis.
Append III: Magnetic field equations
Append IV: Special relativity
Relativistic equation of a space state system are,
Append V: Mass field equations
Maxwell equations set,
and mass field ones become,
References
(1)Biemond, J., "The gravitomagnetic field of a sphere, Gravity Probe B and the LAGEOS satellites", arXiv:0802.3346v1, 22 Feb 2008.
(6)Richard P. Feynman et al. “The Feynman Lectures on Physics”, Addison–Wesley, 1964.
MGF Model (PDF File)
High resolution Images (eps):
Model 32
Model 33
Model 34
Model 45
This file follows more successful tried steps towards final model.
No hay comentarios:
Publicar un comentario